Lunar surface aluminum and iron concentration from Galileo solid state imaging data, and the mixing of mare and highland materials

نویسندگان

  • Erich M. Fischer
  • Carle M. Pieters
چکیده

Apollo X ray spectrometer data provide chemical information for 9% of the lunar surface. Galileo solid state imaging system (SSI) multispectral data for the Moon are employed to reexamine the long-accepted positive correlation between lunar surface reflectance (or albedo) and aluminum concentration, derived from Apollo X ray spectrometer data. The overall goal of the analysis is to quantify the relationship between reflectance and aluminum, and to take advantage of the extensive spatial coverage of the SSI data (-75% of the lunar surface) to calculate aluminum concentration from SSI reflectance for the majority of the lunar surface. After removing nonmature highlands from the analysis, it is found that the relationship between lunar surface reflectance and X ray spectrometer-derived aluminum concentration isdescribed by two diffuse endmembers, representing highland and mare materials, and an apparent mixing line suggestive of mixtures of mare and highland materials. Regression analysis is utilized to show that whereas the correlation between reflectance and aluminum for the entire lunar soil system is fairly good, the correlations for mare soils alone and for highland soils alone are extremely low. The low precision of the Xray data may at least in part be responsible for the observed poor correlations. Although the low correlation for the individual soil types precludes the precise calculation of aluminum concentration from reflectance, approximate aluminum contents can be determined. The excellent inverse correlation between aluminum and iron concentration for returned lunar soils allows an estimation of iron content o be made as well. An extensive zone of mixtures of mare and highland soils exists in the vicinity of mare-filled impact basins, and around smaller craters. This zone occurs in morphologically defined mare and highland units. Physical mixing of more mafic and less mafic material due to vertical and lateral transport by impact and downslope movement can account for the widespread mixing zones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crustal Diversity of the Moon' Compositional Analyses of Galileo Solid State Imaging Data

The multispectral images of the lunar limb and farside obtained by the solid state imaging (SSI) system on board the Galileo spacecraft provide the first new pulse of compositional data of the Moon by a spacecraft in well over a decade. The wavelength range covered by SSI filters (0.4-1.0 }•m) is particularly sensitive to the composition of mare basalts, the abundance of mafic (ferrous) mineral...

متن کامل

Lunar impact basins and crustal heterogeneity: new Western limb and far side data from galileo.

Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orient...

متن کامل

Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA)

[1] Multiple end-member spectral mixture analysis (MESMA) was applied to the Clementine UVVIS global 1 km multispectral data set, and the resulting highland material fraction image was used to investigate highland contamination of mare surfaces by impact cratering. MESMA decomposes each pixel with the number of end-members fewer than the number of the spectral bands of Clementine UVVIS data. Th...

متن کامل

Lunar Feldspathic Meteorites: Constraints on the Geology of the Lunar Farside Highlands, and the Origin of the Lunar Crust

Introduction: The Lunar Magma Ocean (LMO) hypothesis holds that, early in its history the Moon was wholly or mostly molten [1,2]. Mafic minerals (olivine and pyroxene) crystallized first from the magma and sank to form the mantle, enriching the remaining magma in Fe and incompatible elements. Later, plagioclase floated in the dense Fe-rich magma [3,4], and concentrated at the Moon’s surface to ...

متن کامل

Integrated Spectral Analysis of Mare Soils and Craters:Applications to Eastern Nearside Basalts

High spatial resolution Clementine images are examined to measure the reflectance properties of small and optically immature mare craters that have sampled discrete compositional units. The spectral properties of these relatively crystalline mare materials are compared to associated mature soils to determine the effects of space weathering on specific basalt types. Space weathering is observed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007